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NOTATION

Dimensions in Mass-
Symbol Descript ion Length-Time System

L Overall length L

D Diameter at the maximum section L

S Wetted-surface area L2

_V_ Volume L3

R Dimensional radias L

R0 Dimensional nose radius L

Ri Dimensional tail radius L

X Dimensional abscissa L
Y Dimensional ordinate LX
x Nondimensional abscissa, X

y Nondimensional ordinate, Y

L/D Fineness ratio D

0p Prismatic coefficient

CPF Forebody prismatic coefficient
CPA Afterbody prismatic coefficient

LCB Position of the longitudinal center of
buoyancy measured from the nose ex-
pressed as a ratio to the length.

m Distance of maximum section from the
nose expressed as a ratio to the length

r Nondimensional radius

ro Nondimensional nose radius
ri Nondimensional tail radius

C5  Wetted surface coefficient
V Speed LT"1

p Mass density ML-s

v Kinematic viscosity L2 T- 1

R Total resistance MLT-
Rf Frictional resistance 4LT 2

Rr Residual resistance MLT-

AR, Resistance added due to sand roughness nLT- 2

AR2  Resistance added due to strut interfer- mLT- 2

ence effect
EHP Effective horsepower
R1  Reynolds number based on length of body

Ct Total-resistance coefficient

Cf Frictional-resistance coefficient

Cr Residual-resistance coefficient
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ABSTRACT

The results of experiments with a systematic series of 24 mathematically re-

lated streamlined bodies of revolution, showing how the resistance of these bodies at

deep submergence varies with changes in five selected geometrical parameters, are pre-

sented. These geometrical parameters are the fineness ratio, the prismatic coefficient,

the nose radius, the tail radius, and the position of the maximum section.

The characteristics of the series forms, the techniques used in testing, the pro-

cedures used in analyzing the data, the methods of predicting prototype performance, and

the means used to shuw relative performance are explained. The results of tests of

four models at near-surface or snorkelling conditions are also included.

The series forms ard compared on an equal volume basis including the estimat-

ed added resistance due to control surfaces necessary for prescribed directional stability
characteristics. These comparisons indicate that there is a large variation in submerged

resistance among these forms and that there is a definite minimum resistance on each

parameter variation except for the nose radius.

INTRODUCTION

The Bureau of Ships requested' the David Taylor Model Basin to con-
duct a broad investigative program on the resistance of various shapes of

underwater bodies, in order to provide basic data for the hull design of high-

submerged-speed submarines. The investigation was intended not only to cover

bare-hull performance but also to consider the effect on resistance of those

control surfaces that are necessary to meet certain directional-stability

requirements.

The David Taylor Model Basin had previously made a survey of the
literature and existing aeronautical data and incorporated its findings in a

memorandum which, because of its original limited circulation, is reproduced
in Appendix 1. The conclusion that was reached from this survey was that Sys-
tematic data on the resistance of streamlined forms deeply submerged in a

* fluid, was practically nonexistent. Consequently the Taylor Model Basin for-

mulated a mathematically derived series of bodies of revolution which was

designated Series 58. Twenty-four 9-foot models were constructed for the se-
ries. These were tested to determine their resistance at a submergence which

was deep enough to substantially eliminate free-surface effects.

*All references are listed on page 3h of this report.
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The primary purpose of the resistance tests was to determine the
effect, upon submerged resistance, of the variation of five selected geometri-
cal parameters which can be used to define the shape of streamlined bodies of
revolution.

The subject matter of this report concerns the establishment of gen-
eral criteria for designing minimum resistance forms for given service re-
quirements. The characteristics and derivation of the series forms are given;
the methods of testing including the towing apparatus, the devices used to
correct for strut-interference effects, and the method of stimulating turbu-
"lence are described in detail; the techniques for the reduction of model data
and methods for predicting prototype performance are explained; and suggested

considerations for the selection of the minimum resistance form for applica-
tion to submarine design are given. The results of tests of four models at
near-surface or snorkelling conditions are also given to show their influence
upon the final selection of the optimum form.

CHARACTERISTICS OF SERIES 58

The offsets of the models composing Series 58 are derived, by the
method described in Reference 2, from a sixth degree polynomial of the form
y2 = a~x + a 2 x 2 + asxS + a4 x4 + a5 x 5 

+ a 6x 6 , where x is the nondimensional
abscissa and y is the nondimensional ordinate. The arbitrary constants al,

a2 , etc., for each form are determined when the values for the geometrical
parameters are assigned. The geometrical parameters which are varied are,
nondimensionally, the overall prismatic coefficient Cp, the position of the
maximum section m, the nose radius r0 , the tail radius r , , and the fineness
ratio L/A. The nondimensional offsets X/L vs. Y/D are the same for all fine-
ness ratios, once the other four parameters have been fixed. The nose and
tail radii are nondimensionalized by the following relationship:

R
r = D& =-D)Ill-

D 2  D
L

where r is the nondimonsional radius,

R is the dimensional radius,
L is the length, and
D is the diameter.

It should be noted that the nose-radius and tail-radius parameters
as used here do not apply merely .to the extremities of the given forms but
actually affect the shape of the whole form. 2 This is shown in Figure 3 where
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it can be seen that substantial changes of prismatic of forebody and prismatic

of afterbody occur with the changes in nose and tail radii.

A system of serial numbers which describes the nondimensional forms
of the series has been used. The serial number for a given form generally con-
sists of ten integers which are read from left to right in gro'.4s of two to

denote the parameters in the following order: Position of maximum section,

nose radius, tail radius, prismatic coefficient, and fineness ratio. Thus,
to illustrate the parameters and position of the decimal points, for a serial

of 40050165-70,
m = 0.40
ro = 0.50

r, = 0.10

O = o.65
L/D = 7.00

When more than two integers are required to describe the parameter they are
placed in parentheses. Thus for a tail radius of 0.05, the serial is given
as (005).

The forms of Series 58 are defined by five parameters and, assuming
that four variations on each parameter would be required to establish a curve
accurately, it would require 45 or 1024 models to give complete coverage.

Consequently, Series 58 was abbreviated by first selecting a parent form which
would serve as an approximate central point for the variation of each param-

eter. The parent selected was one having a serial of 40050165-70. Twenty-
two models based upon this parent were then constructed. The parameters for
these models are shown in Table 1. One of these models, having an L/D = 5.0,

was selected as a second parent and two additional models were constructed.

The characteristics of these are also shown in Table 1.

A complete table of offsets for each series model is given in Ap-
pendix 2. Each table includes the nondimensional abscissas and ordinates and

dimensional abscissas and ordinates for the construction of a 9-foot model.
Other pertinent data-such as the maximum diameter, volume, wetted surface,
position of the maximum section, position of the longitudinal center of buoy-
ancy, etc., including the mathematical equation for the forms-are also given.

Curves showirZ the variation of wetted-surface coefficient with the five pre-
scribed geometrical parameters are given in Figure 1. Curves showing how the
wetted surface varies on a fixed volume basis are shown in Figure 2.

It is interesting to note that when the comparisons are made on an
equal-volume basis, there is only a small change in wetted surface with pris-
matic coefficient over the range of values covered. This is true even though
there is a substantial change in the wetted-surface coefficients of these

CONFIDENTIAL



5 CONFIDENTIAL

TABLE 1

The Geometrical Parameters for Models of Series 58

Model m ro LrD

415LL 0.240 0.50 0.10 o.65 4.0
4155 0.40 0.50 o.io o.65 5.0

4156 0.40 0.50 0.10 0.65 6.0
4157 o.14o 0.50 0.10 o.65 7.0

4158 0.40 0.50 0.10 o.65 8.0
4159 0.140 0.50 0.10 o.65 10.0
416o 0.36 0.50 0.10 0.65 7.0

4161 0.44 0.50 0.10 0.65 7.0
4162 0.48 0.50 0.10 0.65 7.0
4163 0.52 0.50 0.10 0.65 7.0
4164 0.40 0.50 0.10 0.55 7.0
4165 0.140 0.50 0.10 o.60 7.0
4166 0.40 0.50 0.10 0.70 7.0

4167 0.140 0.00 0.10 0.65 7.0
4168 0.14o 0.30 0.10 o.65 7.0
4169 0.140 0.70 0.10 o.65 7.0

4170 0.40 1.00 0.10 0.65 7.0
4171 0.140 0.50 0.00 o.65 7.0

4172 0.140 0.50 0.05 o.65 7.0
4173 0.140 0.50 0.15 o.65 7.0
4174 0. 40 0.50 0.20 o.65 7.0
4175 0.140 0.50 0.10 O.60 5.0
4176 0.40 0.50 0.10 0.55 5.0
14177 0.34 0.50 0.10 0.65 7.0

forms as shown in Figure 1. The reason for this can be shown by. the following

relationship:

os = _S [21

where C. is the wetted-surface coefficient,
S is the wetted surface,

L is the length, and
D is the maximum diameter.

CONFIDENTIAL
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m.0.40 ro.050 CP -0.
6 5  

_ L/D7.00 I C5

0.01 1 1011L~~I.00
0.0 .04 .08 .12 .16 .20 .24 .28

Tall Radius, r,

m, _ 0.40 .....__ _ _ 11 .65 L/0D 7.00 1.0 5

020 0.40 0.60 0.60 1.00 1.20 .0

Nose Radius, r,

m 0.40 -0.50 0.10 1.05

L 5..0

0.54 0.8 0.62 0.66 0.70 0.74 0.78 0.P2

Prismatic 0oefficient, Cp
3U

ra, 0.50 g "0.10 Cp ,0.65 1 ID T.00iI I
fF1.

Pii t z z I FIJ00
0.34 08 0.42 0.46 0.50 0.54

Position of Maximumn Section, mnol

m ,0.40
v 0. 0.50
r, 0.10 '.35
Cp, 0.65

-. 30

-- 1.25

J 1.20

1.00
4 6 ? 9 10 11

fineness Ratio, -0

Fgurs 2 - Wetted-Surface Areas for Prototypes of Series 58
Compared on a Basis of Equal Volume

The wetted-surfaoe areas have been calculated for bare-hull. prototypes and are ex-
pressed as a ratio to the minimum for each geometrical parameter variation.
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ML= [31

where C. is the prismatic coefficient and *V-is the volume.

Let the fineness ratio L/D = n. Then

C n [4]

or

L (4n__1t
L, = (r0) [5]

Substituting Equation [5] in Equation [2] and transposing

S = C 7r1/s n|/a(4V-)2/ [6]

is obtained. This is the general expression for obtaining the wetted surface
of all prototypes of Series 58. Now, if n and * are taken to be constant and
all the remaining constant terms are collected and denoted by K, then

KCs
S = 57](Cp)2/3,

Substituting numerical values from Figure 1, for Cp 0.55 and L/D 7.00,

S = x o.6954. 1.036K
(0.55)2/a

and for Cp= 0.70 and L/D = 7.00,

S= K x 0.8094 . 1.027 K
(0.70)2"/

Thus there is only 0.9 percent difference In wetted-surface area between the
OF of 0.55 and the Cp of 0.70, a percentage that agrees with Figure 2. Or to
summarize, the wetted-surface coefficient varies approximately as the two-
thirds power of the prismatic coefficient in the range of values covered by
Series 58.

The volumetric distribution on the series forms is shown in Figure
3 by curves of prismatic of the forebody, C.F, prismatic of the afterbody,
CPA, and position of longitudinal center of buoyancy, LOB, versus each of the
prescribed parameters for the series-with the exception of fineness ratio
which does not alter these properties.
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Figure 3 -The Variation of Fborebody Pri.snatic Coefficient, Afterbody
Prismatic Coefficient, and Lonigitudinal Center of Buoyancy

for Series 58

DESCRIPTION OF MODELS

The models for the series were constructed in the model shop at the

; David Taylor Model Basin and were all 9 feet in length. All but two of the

,: models were built of Honduras mahogany. Of the exccepted two, one was made of

Alaska yellow cedar and the other of sugar pine. Mahogany was selected as

the preferred material for building the models since it was found to be more

impervious to water and consequently the models constructed of mahogany main- '

tained their dimensions within a few hundredths of an inch without cracking

or checking, even when subjected to long periods of soaking.

The procedure for constructing the models was as follows: A block

was assembled from glued lifts cut from planks; the block was then turned on

a lathe and cut by a rotating cutting head which travelled along a longitud- ,

inal template defining the profile meridian of the form; a central cutout was

provided in the model to accommodate an internal d.ynamometer and forward and

after cutouts were made to aeeommiodat• the pads for securing the towing struts;

the cutouts were covered by I/8-inch-thick sheet-aluminum plates which were

molded to fit the contours of the model.

CONFIDENTIAL
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The procedure for finishing the models was as follows: The mahogany
was first sealed with marine wood sealer followed by paste wood filler and

then rubbed with burlap or excelsior to remove the excess filler; after about

6 hours of drying time, the model was sprayed with Dupont 1991 lacquer sealer
and then sanded with sandpaper moistened with soapy water until a smooth fin-

ish was obtained; a final coating of Dupont Dulux examel, Ra-190, exterior

clear, was sprayed on the model and, when dry, was rubbed down with a rubbing

compound. A photograph of a typical model is given in Figure 4.

Figure 4 - A Typical Model of Series 58

TEST APPARATUS AND PROCEDURE

The "TMB Paired Towing Struts" were used to tow the series models

in the deep-submergence condition. The assembly of each of the two towing
struts consists of an internal supporting strut and an external fairing. The

internal supporting strut is pin-connected to the model at one end and clamped
to the floating girder of the resistance dynamometer at the other end. The
external fairing is placed concentrically about the supporting strut to shield

it completely from the flow. The fairing is free at the model end and is
fixed to a pair of rails, which are rigidly mounted to the towing carriage, at
the upper end.

The towing arrangement used for the tests is diagrammatically shown
in Figure 5. Two struts were used because a single one of the existing struts

did not have the torsional rigidity required to overcome the inherent dynamic

instability of the bare-hull models at the test speeds comtemplated. The I
fairings of the struts were inserted into the model through deck-plate open-
Ings which had enough clearance to provide for the motion of the resistance
dynamometer and for possible side deflection of the internal strut or fairing.

CONFIDENTIAL
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A resistance increase was expected due to the interference with the
flow about the models caused by the presence of the towing struts. Consequent-
ly, It was necessary to construct a pair of dummy struts in order to determine
the ni~gnitude of this effect. The dumim-strut assem~bly 16 shown in Figure 6.

-Floating Girder

)0000 00000000 0 -DO000000 0000000 00go 00

internal Suipporting Strut FxdBa
Adjusting Screw

Windshield removed
Supporting Strut Brackiet_-- to show bracket.-irsh

T~External Fairing Bracket

External Fairing

0

0J Direction of Tow

internal Supporting Strut

Figure 5 -Schematic Diagram of the Arrangement of the Model-Towing Apparatus
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The dummy struts are supported by a frame which is parallel to the towing

struts. The struts have the same cross section as the fairings of the towing
struts. They project at right angles to the supporting frame and are inserted
into the model in a manner similar to the fairings of the towing struts and,
like the latter, are not attached to the model. The arrangement of placing
the dummy struts at 90 degrees instead of 180 degrees to the towing struts was
selected for two reasons: First, because of the imppx-acticability of I.pport-

ing dummy struts coming up to the bottom of the model, and second', because it

was considered desirable to reproduce, in another plane, the original asym-

metry in flow about the model caused by the towing struts. It was assumed
from previous experience that there would be no measurable increase in resist-
ance due to mutual interference in flow between each towing strut and dummy
strut. The validity of this assumption is verified by the agreement in the

results of tests of 9- and 15-foot geometrically similar streamlined bodies
of revolution, which are discussed in a subsequent section of this report.

For the purpose of stimulating turbulence, the model was prepared

for tests with a 1/2-inch-wide sand strip placed in the form of a circle,

around the nose of the model at a distance of 1/20 of the length (of the mod-

el) from the nose. The strip was prepared by sprinkling 20- to 30-mesh sand

on a thin adhesive coating.
The procedure used in the testing was as follows: The smooth bare

hull was first towed at a range of steady-state speeds from 1 to 18 knots;
the test was then repeated for the model equipped with the sand strip. The
model with the sand strip was tested with the duxmmy struts inserted and then
with the dummy struts removed but with the dummy-strut supporting frame down
(in order to obtain the net effect of the dummy struts alone). The tests with
the dummy struts in place extended only up to a speed of approximately 8.5
knots because the system was not stiff enough to maintain clearance between

the dummy strut and the edge of the cutout in the model at higher speeds.
Strut-interference teats were not conducted for all models since the small

change in strut-interference coefficient from model to model permitted accu-
rate interpolation and extrapolation.

The apparatus used to tow the models at the near-surface or snorkel-
ling conditions consisted of a single towing strut, having a 4- by 1-inch ogi-
val cross section,which was rigidly attached to the model at one end and to the
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